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Abstract. Hojman's results on altemative Lagrangians and first integrals related to sym- 
metries of Lagrangian systems are shown to be covered by previous treatments in a more 
geometrical setting. It is argued that the use of Lagrangians, linear in the accelerations, 
for second-order systems does not widen the spectrum of results. 

1. Introduction 

Many recent papers deal with certain aspects of the study of symmetries of Lagrangian 
systems. The construction of first integrals out of known symmetries is of course best 
known in the context of the celebrated Noether theorem and it is only fairly recently 
that one has learned to cope with other than Noether symmetries. Perhaps the first 
contribution in that direction was made by Lutzky (1979), who observed that point 
symmetries which are not of the Noether type produce a new Lagrangian for the system 
and that the existence of two Lagrangians leads to a matrix whose trace is a constant 
of the motion. Prince (1983), searching for a generalisation, identified a compatibility 
condition under which a velocity-dependent symmetry equally produces an alternative 
Lagrangian. Sarlet (1983) showed how, conversely, two different Lagrangians for the 
same system define a pair of symmetries, which in turn give rise to a pair of related 
first integrals. Further results regarding equivalent Lagrangians and matrices whose 
trace is conserved were derived by Hojman and Harleston (1981) and later confirmed 
by many other authors. In a more geometrical setting, Henneaux (1981) and Crampin 
(1983a) showed how non-Noether constants of this type can all be related to a type 
(1, 1) tensor field whose Lie derivative with respect to the given second-order vector 
field vanishes. In passing, Crampin remarked that a similar construction can be carried 
out starting from an arbitrary dynamical symmetry of the Lagrangian system, i.e. 
irrespective of the possible existence of an alternative Lagrangian. 

Symmetries of Lagrangian systems and the construction of related first integrals is 
again the central theme in a recent paper by Hojman (1984). His approach is entirely 
classical and analytical and, at first sight, would appear to rely heavily on the use of 
Lagrangians which are linear in the accelerations. The principal aim thereby is to 
achieve a result, believed to be new, concerning general dynamical symmetries of the 
equations of motion. Because of the difference in approach, it is a non-trivial exercise 
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to compare Hojman's results with those quoted above. We therefore think it useful 
to point out explicitly here how each of the statements in Hojman (1984) is actually 
covered by a result in one or more of the papers cited above. This will mean that the 
use of Lagrangians, linear in the accelerations, is quite redundant so far as ordinary 
second-order differential equations are concerned. 

2. The redundancy of acceleration dependent Lagrangians 

Throughout this paper we will be dealing with a system of second-order ordinary 
differential equations 

q z  - ' I1( t ,  q, 4 )  = 0 

r = a / a t  + 4'  a /aq '  + A' a l a q '  

i = l , .  . . , n (1) 

(2) 

which is associated with the vector field 

on the manifold R x TM with local coordinates ( t ,  q', 4 ' ) .  The evolution space R x TM 
may be identified with the first jet bundle J ' (R ,  M )  (see e.g. Crampin et a1 1984). One 
might consider passing to higher-order jet bundles and see whether (1) can be derived 
from a Lagrangian L(t ,  q, q, q ) .  Generically, such a Lagrangian will give rise to 
differential equations of order 4. When i is linear in q, say 

i = P , ( Q ? , 4 ) 4 ' + F ( t 9  974)  (3 
the associated Euler-Lagrange equations will be of order 3 and they can only be of 
second order if we have PI  =af /aq '  for some function$ It then follows, however, that 

i= L+df /d t  (4) 

L( t ,q ,q )=  F - a f / a t - q k a f / a q k  ( 5 )  

where L is defined by 

and will be a conventional Lagrangian for the same system (1). When one insists that 
i be a linear combination of its own equations of motion, in other words that the 
function F in (3) be of the form F = -Af af/aq', the expression (5) for the related 
conventional Lagrangian simply becomes 

L = -r(f). (6) 

These simple arguments sufficiently indicate that nothing new is to be expected from 
using acceleration dependent Lagrangians in the study of ( 1 ), since every result about 
L' must have an immediate translation to a corresponding result for L. 

For completeness, let us formulate the following alternative description of the 
situation. In a more modern framework, the Euler- Lagrange equations correspond to 
a characteristic vector field of the contact form de, where 0 is the PoincarC-Cartan 
1-form. In general, when it concerns a Lagrangian i dependent on accelerations, the 
local expression of the appropriate PoincarC-Cartan form CL is given by (see e.g. 
Krupka 1983, Klapka 1983), 

a i  d a i  a i  
a$ d t  a$ a4' 

CL = i d t  + (- -- (-)) (dq' - q' d t )  +-(dqJ - q' dt ) .  (7) 
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In the case when i is of the form (3) ,  it is straightforward to verify that 6~ actually 
reduces to O i  = OL + dJ where OL is the conventional Cartan form: 

aL 
aq '  

&= L dt+-(dqi - q i  dt )  

L being defined by ( 5 ) .  So the difference between $f and OL turns out to be an exact 
1-form, which does not play any significant role. 

Let us now turn our attention to symmetries of the given system ( 1 ) .  A vector field 
Y, which has the local coordinate expression 

(9) 

represents a general dynamical symmetry of ( 1 )  if [ Y, r] = 0. One might incorporate 
a a l a r  term in Y and require the Lie bracket with r to produce a multiple of r. 
However, as has repeatedly been argued in previous publications (see e.g. Sarlet 1983), 
it is only a certain equivalence class of symmetries that matters and one can work with 
the representation (9) without loss of generality. For the sake of comparison, recall 
that the symmetry condition in coordinates means 

Y=ILl(f, 4 , 4 )  a / W +  v ' ( 4  994) a / a q '  

= r(@i) and r(vi)  = y ( x )  (10) 

and note that (10) is identical to the symmetry requirement (2.6) in Hojman (1984). 
Suppose now that L is a Lagrangian governing ( l ) ,  so that 

ir dOL = 0. ( 1 1 )  

One may wonder under what circumstances the Lie derivative of deL with respect to 
the symmetry Y will produce a new Cartan 2-form (not necessarily of maximal rank) 

Y'y dOL = dBL (12) 

for some function L'. A concise formulation of the conditions for a 2-form R to be a 
Cartan form has been given by Crampin er al (1984) (theorem 2). With R = Y',, deL, 
it is obvious that dR = 0 and irR = 0 in view of ( 1  1 )  and the fact that Y and r commute. 
The only requirement which then remains to be satisfied is 5fy deL(a/aqi, a l a $ )  = 0. 
When expressed in coordinate form, it reads 

by which we recover the compatibility condition identified by Prince (1983). Locally, 
(13 )  is equivalent to the condition aopJ = -aG/aqi for some function G(t ,  q, q ) ,  and 
as pointed out, e.g. by Sarlet (1983) (lemma 2), the new function L' of (12) is then 
determined by L'= -r( G). From the observations (3)-(6) it follows that a correspond- 
ing acceleration dependent Lagrangian is given by - 

, J ~ J (  4 '  - A ' ) .  (15 )  L'= -ff 

It is therefore not a surprise that Hojman, in studying the conditions under which (15 )  
provides a new Lagrangian (see his equation (4.2)), arrived at the same requirements 
(13). 
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3. First integrals associated with general dynamical symmetries 

We consider, with Hojman, the example of a multidimensional oscillator with 
Lagrangian 

We then have A' = -q' and a dynamical symmetry is given by 

Y =  E(q 'a /aq '+q 'a /ag ' )  (17) 

where E = X I  ( q Z 2  + q") is the energy function. The symmetry Y is actually the product 
of the constant of the motion E with a symmetry satisfying the conditions (13), but 
does not itself satisfy these conditions and hence does not give rise to a new function 
L'. Finding associated first integrals for such a symmetry was the main point in 
Hojman's paper. Though his approach certainly is original and has its odn merits, in 
fact the same question was solved before by Crampin (1983a) along the following lines 
(see also Sarlet and Cantrijn 1984). Putting 

a = i y  deL, (18) 

the relations 

iR(x)  deL = ix d a  

(R(X) ,d t )=O 
for all vector fields X 

under the assumption that L is regular, uniquely define a type (1 , l )  tensor field R, 
here considered as a linear map (over the ring of functions) on the set of vector fields. 
What makes R interesting is the property 

LfrR=O. (21) 
The coordinate form of this property gives rise to a matrix equation of Lax type and 
the eigenvalues, as well as the other invariants of the matrix, are therefore first integrals. 
Crampin et a1 (1983) subsequently succeeded in further characterising a situation in 
which the system eventually turns out to be completely integrable. 

Returning to our example, we have 

dOL = dq' A dq' - d E  A d t  (22) 

CY= E ( q ' d q i - q ' d 4 ' - 2 E  dt) .  (23) 

X = p a / a t + a ' a / a q ' + p ' a / a g ' .  (24) 

and a, as defined by (18), explicitly reads 

Now let X be an arbitrary vector field, locally represented as 

The right-hand side of equation (19) then becomes 

iu dcu = (a '9' + P ' q ' ) (  # dq' - q' dg-' - 2 E dt )  - (a'q' - P'q' - 2 E )( q' dqJ + cj' dq') 

+2E(P1+q 'p)  dq'  -2E(a'  - 4 ' ~ )  dq'  - ( P ' q ' +  a 'q ' )  dt. 

If, on the other hand, we write R ( X )  as 

R(X)  = 6' e /aq '+  77' a l a q '  
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with zero a / a t  component in view of ( 2 0 ) ,  the left-hand side of (19) takes the form 

iR(x) deL = 77' dq' - 6' dq' - ( viqi + 6 '4 ' )  dt. ( 2 7 )  

Identifying the coefficients of dq' and dqi  in (25) with those in (27), we obtain an 
explicit expression for the linear transformation from the vector (p, a ', p ') to the vector 
(0, ti ,  si), from which it is easy to read directly the coordinate expression of the (1, l )  
tensor R (identification of the d t  terms in ( 2 5 )  and ( 2 7 )  merely produces a relation 
which is identically satisfied from the previous ones). We thus find R to be 

The coefficients in the first two terms of (28) determine the earlier mentioned 2n X2n 
matrix with constant eigenvalues and this matrix is seen to be identical to the one 
obtained by Hojman (see Hojman (1984), equation (5.15)). Having convinced ourselves 
through this example that Hojman's results are indeed covered by Crampin's procedure 
(19), ( 2 0 ) ,  we can, for the general theory, actually obtain formulae which are slightly 
better than those given by Hojman. The reason is that, while the relevant coefficient 
matrix in R, in principle, results from the product of one 2n X2n matrix with the 
inverse of another one (see e.g. Hojman's equation (4.19)), it should be possible to 
obtain a formula in which only the inverse of the n X n Hessian matrix (14) is involved. 
A suitable basis of 1-forms and vector fields for this purpose has been provided by 
Crampin (1983b) for the autonomous case and by Crampin er a1 (1984) for the 
time-dependent theory. 

Going back to the general situation of system (1) and the associated vector field 
r in (2), we thus introduce the dual bases {e ' ,  $', dt} and {HI, V,, r} of 1-forms and 
vector fields, where 

e '=  dq'  - q'  dt  (29) 

H, = a/aq '  - A: a l a #  V, = a l a $  (30) 

A; = - +  aA1/a#. (31) 

$' = dg' - A' dt  + A; @ 

with 

Assuming that (1) is derivable from a Lagrangian L, de, now takes the particularly 
simple form 

 de^ = CZ,$' A @. (32) 

Let Y, as in (9), denote a general dynamical symmetry of (1). In view of ( l l ) ,  the 
1-form a of (18) will not contain d t  terms. We write 

a=iydeL=u,€P-b,+' (33) 

u 1 = a , , ( v ' + A ; p k )  b, = a,]+'. (34) 

where 

In computing da ,  it is quite easy to show that the coefficients of d t  A 13' and d t  A I,P 
are zero if one takes account of the following relations, which constitute part of the 
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Helmholtz conditions (see Sarlet (1982) or Crampin et al (1984)) satisfied by (au ) :  

r( aij) = aikAf + a. .  IJ = 0 . .  J I  a,j@i = a k j @ {  (35) 

It follows that 

d a  = { Hk( U , )  - b,Hk(A1)}Bk A 8.' - vk( b , )+k  A 4' + { v k ( U J )  + y( bk) - b,vk(A:)}+k A 8.'. 
(37)  

We now proceed as in the example above. Writing a general vector field X in the 
form X = p T +  a 'H ,  + p ' V ,  and denoting R ( X )  by R ( X )  = ('Hf + vfV,, we can compute 
both sides of (19) and identify the coefficients of the basis 1-forms. Setting (g") = (a lJ ) - ' ,  
we find eventually that the ( 1 , l )  tensor field R, with respect to the indicated dual 
bases, is given by 

= g " { [  Vk ( UJ + HJ ( bk) - bt Vk @ @ + [ v, ( a k )  + Hk ( b,) - b! v, @ @ 
+ [ H , ( a k ) -  b f H J ( A ' , ) - H k ( a , ) +  b~Hk(A;)l  v,@8.' 

+ [ v, ( bk - vk ( b~ 1 H I  @ 1. (38) 

The 2n x2n coefficient matrix, which is determined by this expression, constitutes a 
more explicit version of Hojman's equation (4.19) for reasons indicated above. 

As a final remark we recall that Hojman announced a further constant of motion 
(Hojman (1984), equation (4.24)), which, although not very clearly stated in the paper, 
only makes sense when two independent symmetries are known ( S  Hojman, private 
communication). In our notation, it reads 

J = -[r( aIJp:)+ (ykJp: aAk /a4 '1p;+  @lJp:v; (39) 
where (p: ,  4 )  are the components of the symmetry YJ ( i  = 1,2). Again, this first integral 
is not essentially related to the use of acceleration dependent Lagrangians. As a matter 
of fact, one can easily verify that J = i , i ,  deL, the constancy of which is obvious and 
was exploited, for example, in Sarlet (1983). 
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